Refine Your Search

Topic

Search Results

Technical Paper

Control-Oriented Dynamics Analysis for Electrified Turbocharged Diesel Engines

2016-04-05
2016-01-0617
Engine electrification is a critical technology in the promotion of engine fuel efficiency, among which the electrified turbocharger is regarded as the promising solution in engine downsizing. By installing electrical devices on the turbocharger, the excess energy can be captured, stored, and re-used. The electrified turbocharger consists of a variable geometry turbocharger (VGT) and an electric motor (EM) within the turbocharger bearing housing, where the EM is capable in bi-directional power transfer. The VGT, EM, and exhaust gas recirculation (EGR) valve all impact the dynamics of air path. In this paper, the dynamics in an electrified turbocharged diesel engine (ETDE), especially the couplings between different loops in the air path is analyzed. Furthermore, an explicit principle in selecting control variables is proposed. Based on the analysis, a model-based multi-input multi-output (MIMO) decoupling controller is designed to regulate the air path dynamics.
Technical Paper

Aerodynamic Side Forces on Passenger Cars at Yaw

2016-04-05
2016-01-1620
Side force has an influence on the behaviour of passenger cars in windy conditions. It increases approximately linearly with yaw angle over a significant range of yaw for almost all cars and the side force derivative, (the gradient of side force coefficient with yaw angle), is similar for vehicles of a given category and size. The shape factors and components which affect side force for different vehicle types are discussed. The dominant influence on side force, for most cars, however, is shown to be the vehicle height which is consistent with slender wing theory if the car and its mirror image are considered. This simple theory is shown to apply to 1-box and 2- box shapes, covering most MPVs, hatchbacks and SUVs, but does not adequately represent the side forces on notchback and fastback car shapes. Data from simple bodies is used to develop a modification to the basic theory, which is applied to these vehicle types.
Technical Paper

Optimization of the Number of Thermoelectric Modules in a Thermoelectric Generator for a Specific Engine Drive Cycle

2016-04-05
2016-01-0232
Two identical commercial Thermo-Electric Modules (TEMs) were assembled on a plate type heat exchanger to form a Thermoelectric Generator (TEG) unit in this study. This unit was tested on the Exhaust Gas Recirculation (EGR) flow path of a test engine. The data collected from the test was used to develop and validate a steady state, zero dimensional numerical model of the TEG. Using this model and the EGR path flow conditions from a 30% torque Non-Road Transient Cycle (NRTC) engine test, an optimization of the number of TEM units in this TEG device was conducted. The reduction in fuel consumption during the transient test cycle was estimated based on the engine instantaneous Brake Specific Fuel Consumption (BSFC). The perfect conversion of TEG recovered electrical energy to engine shaft mechanical energy was assumed. Simulations were performed for a single TEG unit (i.e. 2 TEMs) to up to 50 TEG units (i.e. 100 TEMs).
Technical Paper

The Influence of Thermoelectric Materials and Operation Conditions on the Performance of Thermoelectric Generators for Automotive

2016-04-05
2016-01-0219
An automotive engine can be more efficient if thermoelectric generators (TEG) are used to convert a portion of the exhaust gas enthalpy into electricity. Due to the relatively low cost of the incoming thermal energy, the efficiency of the TEG is not an overriding consideration. Instead, the maximum power output (MPO) is the first priority. The MPO of the TEG is closely related to not only the thermoelectric materials properties, but also the operating conditions. This study shows the development of a numerical TEG model integrated with a plate-fin heat exchanger, which is designed for automotive waste heat recovery (WHR) in the exhaust gas recirculation (EGR) path in a diesel engine. This model takes into account the following factors: the exhaust gas properties’ variation along the flow direction, temperature influence on the thermoelectric materials, thermal contact effect, and heat transfer leakage effect. Its accuracy has been checked using engine test data.
Technical Paper

The Characterisation of a Centrifugal Separator for Engine Cooling Systems

2015-04-14
2015-01-1693
It is an engineering requirement that gases entrained in the coolant flow of an engine must be removed to retain cooling performance, while retaining a volume of gas in the header tank for thermal expansion and pressure control. The main gases present are air from filling the system, exhaust emissions from leakage across the head gasket, and also coolant vapour. These gases reduce the performance of the coolant pump and lower the heat transfer coefficient of the fluid. This is due to the reduction in the mass fraction of liquid coolant and the change in fluid turbulence. The aim of the research work contained within this paper was to analyse an existing phase separator using CFD and physical testing to assist in the design of an efficient phase separator.
Journal Article

Aerodynamic Drag of Passenger Cars at Yaw

2015-04-14
2015-01-1559
The aerodynamic drag characteristics of a passenger car are typically defined by a single parameter, the drag coefficient at zero yaw angle. While this has been acceptable in the past, it may not allow a true comparison between vehicles with regard to the impact of drag on performance, especially fuel economy. An alternative measure of aerodynamic drag should take into account the effect of non-zero yaw angles and some proposals have been made in the past, including variations of wind-averaged drag coefficient. For almost all cars the drag increases with yaw, but the increase can vary significantly between vehicles. In this paper the effect of various parameters on the drag rise with yaw are considered for a range of different vehicle types. The increase of drag with yaw is shown to be an essentially induced drag, which is strongly dependent on both side force and lift. Shape factors which influence the sensitivity of drag with yaw are discussed.
Technical Paper

Study on Optimization of Regenerative Braking Control Strategy in Heavy-Duty Diesel Engine City Bus using Pneumatic Hybrid Technology

2014-04-01
2014-01-1807
Recovering the braking energy and reusing it can significantly improve the fuel economy of a vehicle which is subject to frequent braking events such as a city bus. As one way to achieve this goal, pneumatic hybrid technology converts kinetic energy to pneumatic energy by compressing air into tanks during braking, and then reuses the compressed air to power an air starter to realize a regenerative Stop-Start function. Unlike the pure electric or hybrid electric passenger car, the pneumatic hybrid city bus uses the rear axle to achieve regenerative braking function. In this paper we discuss research into the blending of pneumatic regenerative braking and mechanical frictional braking at the rear axle. The aim of the braking function is to recover as much energy as possible and at the same time distribute the total braking effort between the front and rear axles to achieve stable braking performance.
Technical Paper

A Direct Comparison between Numerical and Experimental Results for Airborne Noise Levels in Automotive Transmission Rattle

2014-04-01
2014-01-1756
In this paper, a direct correlation between transmission gear rattle experiments and numerical models is presented, particularly focusing on the noise levels (dB) measured from a single gear pair test rig. The rig is placed in a semi-anechoic chamber environment to aid the noise measurements and instrumented with laser vibrometers, accelerometers and free field microphones. The input torsional velocity is provided by an electric motor, which is controlled by a signal generator, aiming to introduce an alternating component onto the otherwise nominal speed; thus, emulating the engine orders found in an internal combustion engine. These harmonic irregularities are conceived to be the triggering factor for gear rattle to occur. Hence, the rig is capable of running under rattling and non-rattling conditions. The numerical model used accounts for the gear pair's torsional dynamics, lubricated impacts between meshing teeth and bearing friction.
Technical Paper

Surface Conditioning of Carbon-Fiber Ceramic Rotors against Organic Pads

2012-09-17
2012-01-1833
Previous research has highlighted that the formation of a sustained friction film, desired for stable and predictable friction performance, is highly dependent upon the region of the substrate (CMC) being examined. In attempt to improve the friction performance, notably bedding-in, research at LU has been developing coatings aimed at ensuring friction film development across the substrate. This paper focuses on the performance of one of these coating formulations, and examines the performance of this on a laboratory scale dynamometer. Subsequently, the coating has then been applied to a full size brake disc, as used on a prestige vehicle, for dynamometer testing at an industry scale for comparative purposes. On both lab and full scale samples the bedding performance shows improvements over the standard material, and at the full scale the coating indicates improved stability of subsequent friction performance through a modified AK Master test schedule.
Technical Paper

The Value of Component in the Loop Approaches to Exhaust Energy Management in Hybrid Vehicles

2012-04-16
2012-01-1024
Recent work on thermo-electric (TE) systems has highlighted the need for refined heat transfer design as well as the long standing need for improved materials performance. Recent work on heat transfer for TE systems has shown that enhanced heat transfer is needed over and above what would normally be seen in a vehicle exhaust system. In particular a better understanding of flow development and boundary layer behaviour is needed to support new design proposals. In the meantime, recent work in TE materials suggests that with the use of skutterudites significant performance benefits can accrue over existing materials. The current generation of TE materials have non-dimensional thermoelectric figure of merit (ZT) values of around 1. Skutterudites have been demonstrated to have ZT values of about 1.4 and can maintain these values over a wider temperature range than do existing materials through the engineering of the TE device.
Technical Paper

Analytical Evaluation of Fitted Piston Compression Ring: Modal Behaviour and Frictional Assessment

2011-05-17
2011-01-1535
Piston compression rings are thin, incomplete circular structures which are subject to complex motions during a typical 4-stroke internal combustion engine cycle. Ring dynamics comprises its inertial motion relative to the piston, within the confine of its seating groove. There are also elastodynamic modes, such as the ring in-plane motions. A number of modes can be excited, dependent on the net applied force. The latter includes the ring tension and cylinder pressure loading, both of which act outwards on the ring and conform it to the cylinder bore. There is also the radial inward force as the result of ring-bore conjunctional pressure (i.e. contact force). Under transient conditions, the inward and outward forces do not equilibrate, resulting in the small inertial radial motion of the ring.
Technical Paper

Comparison between Kalman Filter and Robust Filter for Vehicle Handling Dynamics State Estimation

2002-03-04
2002-01-1185
This paper explores design methods for a vehicle handling dynamics state estimator based on a linear vehicle model. The state estimator is needed because there are some states of the vehicle that cannot be measured directly, such as sideslip velocity, and also some which are relatively expensive to measure, such as roll and yaw rates. Information about the vehicle states is essential for vehicle handling stability control and is also valuable in chassis design evaluation. The aim of this study is to compare the performance of a Kalman filter with that of a robust filter, under conditions which would be realistic and viable for a production vehicle. Both filters are thus designed and tested with reference to a higher order source model which incorporates nonlinear saturating tyre force characteristics. Also, both filters rely solely on accelerometer sensors, which are simulated with expected noise characteristics in terms of amplitude and spectra.
Technical Paper

Human Factors Issues in the Application of a Novel Process Description Environment for Machine Design and Control Developed under the Foresight Vehicle Programme

2002-03-04
2002-01-0466
In the globalization of the automotive businesses, manufacturing companies and their suppliers are forced to distribute the various lifecycle phases in different geographical locations. Misunderstandings arising from the variety of personnel involved, each with different requirements, backgrounds, roles, cultures and skills for example can result in increased cost and development time. To enable collaborating companies to have a common platform for interaction, the COMPANION project at Loughborough University has been undertaken to develop a common model-based environment for manufacturing automotive engines. Through the use of this environment, the stakeholders will be able to “visualize” consistently the evolution of automated systems at every lifecycle stage i.e. requirements definition, specification, design, analysis, build, evaluation, maintenance, diagnostics and recycle.
Technical Paper

Measurement of Air Flow Around an Inlet Valve Using a Pitot Probe

1998-02-23
980142
This paper describes a detailed study into the use of a pitot probe to measure air flow around an inlet valve under steady state conditions. The study was undertaken to assess the feasibility of the method for locating areas of a port and valve which may be contributing to a poor overall discharge coefficient. This method would provide a simple and cheap experimental tool for use throughout the industry. The method involves mounting a miniature internal chamfer pitot tube on a slider attached to the base of the valve. The probe can traverse the appropriate area by rotating the valve and moving it along the slide. Changing the probe allows measurements in different planes, allowing the whole region around the valve to be surveyed. The cylinder head complete with instrumentation is mounted on a steady flow rig. The paper presents the results obtained at different valve lifts on a production cylinder head.
X